Explaining models relating objects and privacy
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Abstract

Accurately predicting whether an image is private before
sharing it online is difficult due to the vast variety of con-
tent and the subjective nature of privacy itself. In this pa-
per, we evaluate privacy models that use objects extracted
from an image to determine why the image is predicted as
private. To explain the decision of these models, we use
feature-attribution to identify and quantify which objects
(and which of their features) are more relevant to privacy
classification with respect to a reference input (i.e., no ob-
jects localised in an image) predicted as public. We show
that the presence of the person category and its cardinal-
ity is the main factor for the privacy decision. Therefore,
these models mostly fail to identify private images depict-
ing documents with sensitive data, vehicle ownership, and
internet activity, or public images with people (e.g., an out-
door concert or people walking in a public space next to a
famous landmark). As baselines for future benchmarks, we
also devise two strategies that are based on the person pres-
ence and cardinality and achieve comparable classification
performance of the privacy models.

1. Introduction

People take photos in a large variety of situations (e.g.,
at a party, of themselves, of a landmark, or of friends, fam-
ily, animals, or food) and share them on social media plat-
forms, often lacking awareness of privacy risks associated
with their sharing [2, 7]. Images may contain a set of ob-
jects that reveal private information about a person or be as-
sociated with a specific location or event that the person is
attending. Therefore, an automatic warning prior to sharing
could help users protect their privacy [13,19,28].

Privacy classification methods are trained on datasets an-
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notated by one or multiple annotators with a binary label
(public or private) [26, 28,29]. As the notion of privacy
varies among people and also depends on the context, the
annotation in these datasets is potentially ambiguous. Most
of the existing works design methods that aimed at improv-
ing the classification performance on these datasets. We cat-
egorise existing methods for image privacy as single-stage
and two-stage. Single-stage methods directly train or fine-
tune a deep neural network (DNN) from the images [13].
Two-stage methods uses DNNs (e.g., convolutional neu-
ral networks or CNNs) to extract concepts (i.e., objects,
scenes) from the images followed by a privacy classifier in
the second-stage, such as a Multi-Layer Perceptron (MLP)
or a graph neural network (GNN) [3,19,21,22,26]. Two-
stage methods can be further split into end-to-end train-
ing or hybrid. End-to-end training based methods fine-tune
the DNNss to initialise the concept features for the privacy
classifier [19, 26]. Hybrid methods extract concepts from
the images with a pre-trained detector or multi-label image
classifier [3,21,22].

In this paper, we explain the decisions made by a
range of privacy classifiers that use as input the cardinal-
ity and confidence features of objects identified in an im-
age (see Fig. 1). Among many existing explainability meth-
ods [14, 16, 17,20, 27], we select integrated gradients [20]
that is computationally efficient and attributes the decision
of the privacy models to the identified objects and their fea-
tures with respect to a reference input. This reference input
consists of features with zero values to represent the case
of no objects localised in an image and hence classified as
public. Based on the findings from the explainability anal-
ysis, we define two simple strategies using people presence
as main driving factor to determine whether an image is pri-
vate. These explainable-by-design strategies achieve com-
parable performance to the more complex privacy-decision
models'. As baselines in future comparisons, these strate-
gies will also enable the design of explainable and more
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Figure 1. Two-stage privacy method: a pre-trained object detector identifies concepts (e.g., objects, scene type) within an image and a
privacy model is trained to classify an image as private or public, considering the cardinality and confidence level of the extracted objects
(numbers below each object). The input image is from the PrivacyAlert dataset [29], with obfuscation added on the face of the person.

accurate privacy models that capture and use relationships
between concepts beyond the only presence and cardinality
of people in images.

2. Problem formulation

Let I be an image and fp(-) a privacy model trained
on a dataset D = {(I,y),})\_, to predict a class y €
{0,1}, where 0 denotes public and 1 private, 6 contains
the model parameters, and N is the number of images in
the training dataset. We consider the privacy model to
map the outputs of other models to the predicted class y:
y = fo(dy(I)), where n contains pre-trained parameters.
For example, d,,(-) can be a pre-trained object detector that
localises a set of objects with their confidence in the im-
age I. We refer to the pre-defined categories outputted
by these pre-trained models as concepts. Therefore, let
X ={x°le=0,...,C — 1} be the set of C' concepts with
their F-dimensional feature vectors x° = [xf,...,2%_,]
that are provided as input to the privacy model.

Our objective is to explain why the trained model fp(-)
predicts the label y = 1 for a given image I (observable ex-
planation [1]). Specifically, we want to determine which
concepts contribute to the prediction of the private label
for the input image. To this end, we use post-hoc explain-
ability to assign a score to each feature of each concept,
o(z§) € {-1,1}.

Following previous works [19, 21, 26], we consider ob-
jects as concepts and we use a pre-trained object detector to
localise a pre-defined set of objects [15] (i.e., C = 80 for
the COCO dataset [12]). We define two features (F' = 2)
for each object: cardinality, 2 € N and confidence, z{ €
[0,1]. For cardinality, we count the number of instances
localised in an image and belonging to each object. If no
instances are localised for an image, then the cardinality is
set to 0. For confidence, we retain the value of the most
confident object instance if multiple instances of the same
object are localised in an image. The privacy model could
be an MLP or a GNN [3, 19, 21, 22,26]. For MLP, the in-
put is the concatenation of all object features, resulting in a
vector of dimensionality CF: x =[...,x°,...],Vx¢ € X.
For GNN, the input is a C' x F' matrix of the object fea-
tures, where each row corresponds to a node of a graph. For

simplicity, we use the set X" as input of the privacy model,
independently of the representation: fy(X).

3. Explaining image privacy predictions

In this section, we describe the dataset and models used
for image privacy (see the Supplementary Material docu-
ment for additional details), and discuss their classification
performance. We explain the models decision and analyse
the explainability results.

Dataset. We use PrivacyAlert [29] as a recent image pri-
vacy dataset D for our evaluations and analyses. Priva-
cyAlert has 6,800 images” split into a training set of 3,136
images (788 private images and 2,348 public images), a val-
idation set of 1,864 images (466 private images and 1,398
public images), and a testing set of 1,800 images (450 pri-
vate images and 1,350 public images), as originally de-
scribed by the authors [29]. The dataset has a high class
imbalance towards the public images (ratio of about 3:1).

Methods. We consider MLP [3,21], two graph-based mod-
els, GIP [26] and GPA [19], and a graph-agnostic model
(GA-MLP) [6]. The MLP aims at reproducing Tonge et
al.’s method [21] that uses Support Vector Machine as a pri-
vacy classifier and, as input, a binary feature vector of the
top-k most confident classes recognised by a pre-trained
CNN for multi-label object recognition. In our case, we
replace the multi-label classifier with the object detector
and the object presence with the cardinality and confidence
features of the identified objects. The MLP consists of 3
hidden layers, each with a 16-dimensionality hidden status
and followed by batch normalisation. GIP and GPA mod-
elled graphs to relate the objects with two privacy classes
or the objects with each other, respectively, using a Graph
Reasoning Model [24] as GNN. These two models belong
to the two-stage end-to-end training category. They fine-
tune the CNNs in the first stage to initialise the node fea-
tures and the CNN thus contribute to the privacy decision
of the models. For a fair comparison, we adapt GIP and
GPA to the two-stage hybrid approach by decoupling the
GNN from the CNNs. We use only the GNN with the graph

2PrivacyAlert provides links to images on Flickr whose license was
falling under Public Domain [29]. Note that 7 images are no longer avail-
able and we re-train and evaluate models excluding these images.
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Figure 2. Sample of training images from PrivacyAlert [29] correctly predicted as private (first row) and incorrectly predicted as private
(fourth row) by the graph-agnostic baseline [6], with their extracted object and features (blue bar plots) and the explanation scores (red bar
plots) of Integrated Gradients (IG) [20]. Darker colours (left bar) are associated with the confidence feature and lighter colours (right bar)
with cardinality. Positive IG scores support privacy, whereas negative IG scores support the public decision. Note the different maximum
limit for the y-axis in the top-right blue bar plot (fifth column, second row).

modelled by each method and with the cardinality and con-
fidence as input node features. This adaptation allows us
to assess the impact of the GNN as privacy model. GA-
MLP aims to replicate the steps of a GNN but without the
graph structure (graph-agnostic) [6]. To enable the training
of the model, we independently project each node feature to
a higher dimensionality vector with a fully connected layer
shared among the nodes, and we then concatenate the pro-
jected features. Similarly to the multiple layers of a GNN,
we refine the projected node features using three blocks,
each consisting of a fully connected layer, a batch normal-
ization layer [9], a ReLU activation function, and a dropout
layer [18]. We aggregate the refined features using global
sum pooling and we provide the resulting global feature
vector as input to an MLP-based classifier.

Classification. Table 1 compares the classification perfor-
mance of the privacy models on PrivacyAlert. Given the
class imbalance of the dataset, we discuss the results in
terms of recall on the private class and balanced accuracy
(average recall of the two classes), reported as percentages.
Both MLP and GA-MLP achieve a balanced accuracy of
71.60% and 74.30%, respectively, and an overall precision
of 69.90% and 70.20%. GA-MLP correctly identifies more
private images than MLP (higher recall in the private class).
GPA and GIP models degenerate to predict (almost) all im-

ages as public, showing that the decoupled graph compo-
nent based only on object features is not useful for privacy.
This suggests that the models trained in the corresponding
papers [19,26] were driven by the fine-tuning of CNNS.
Explainability analysis. To explain the privacy models, we
analyse the importance of the extracted concepts and their
features to the decision of the models by using Integrated
Gradients (IG) [20]. IG is a post-hoc explainability method
that is widely used to attribute the prediction of a model to
the input features, resulting in a IG score per object feature
¢(z5). AsIG is model-agnostic, the method can be applied
to all gradient-based models. Specifically, IG compares the
privacy prediction of a model fy for the input set of objects
features A’ with the privacy prediction of the same model for
a reference input R = {r°lc =0,...,C — 1}. As private
is the target class, we select a null-vector as our reference
for each concept: r¢ = 0,Ve so that fy(R) = 0. This
is equivalent to no objects detected in an image. IG also
satisfies the completeness axiom [20],

C

fo(X) = fo(R) = >

c=0 j

—

F—1

b(z5), (1)

<
I
o

that quantifies the contribution of the features of all objects
towards the decision of the model. Fig. 2 shows the ex-
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Figure 3. Comparison of the explainability scores across training images correctly classified as private by the graph-agnostic (GA-MLP)
and MLP models on the training set of PrivacyAlert [29]. We show only the top 5 objects based on the largest mean absolute explainability
scores. Note that colours of the data points represent the value of the object feature. Also note the different limits of the colour bars.

plainabilty scores for a sample of images predicted as pri-
vate by GA-MLP. Images are selected from the training set
of PrivacyAlert based on the objects and their cardinality
identified in the images, contrasting correct and incorrect
predictions. When images are correctly predicted as pri-
vate (top row), high confidence in detecting a person signif-
icantly influences the decision of the model. On the con-
trary, the localisation of multiple individuals in an image
tends to favour the public class. Public images are often
misclassified due to the detection of person (second row of
images). Fig. 3 compares the predictions and explainability
of GA-MLP and MLP across all images correctly identified
as private in the training set>. As for the previous analysis,
person is the most relevant concept for private predictions.
Unlike MLP, GA-MLP favours the public class when three
or more people are detected.

4. Person-centric classification

Based on the outcomes of the previous analysis, we de-
vise two person-centric decision strategies that act directly
on the objects extracted by the vision models and the cor-
responding features. The first, simple strategy classifies an
image as private if at least one person is detected, x§ > 1,
where zf is the cardinality feature and the object c corre-
sponds to person. The second, simple strategy includes an
additional constraint that limits the number of people lo-
calised in an image, i.e., z5 > 0 A g < 2, where A is the
logical AND operator.

We report the performance of these two strategies on the
testing set of PrivacyAlert in Table 1. The second strat-

3The confidence to predict the reference input as private is 0.2 for MLP
and 0.1 for GA-MLP.

Table 1. Classification performance on the testing set of Priva-
cyAlert [29]. All the models are using the same object detector
to extract object features from the images. Note the failure of
GPA [19] and GIP [26] adapted to the hybrid approach and us-
ing only GNN (recall of 100% for public class, and precision and
recall of 0% for private class). Their original performance was
driven by the dependence on CNNs [19,26].

Method Public Private Overall
P R P R P BA
All private 0.00 0.00 25.06 100.00 12.53 50.00
All public 74.94 100 0.00 0.00 37.47 50.00
MLP 86.29 82.32 53.52 60.89 69.90 71.60
GPA™ 75.30 97.62 37.25 4.22 56.28 50.92
GPA®° 74.94 100 0.00 0.00 37.47 50.00
GIP# 74.94 100 0.00 0.00 37.47 50.00

GA-MLP 88.87 77.71 51.53 70.89 70.20 74.30

Strategy-1 94.76 55.05 40.34 90.89 67.55 72.97
Strategy-2 89.67 73.55 48.55 74.67 69.11 74.11

KEY - P: precision; R: recall, BA: Balanced accuracy; MLP: multi-layer
perceptron; GA: graph-agnostic baseline; GPA: Graph Privacy Advisor [19];
+: GPA adapted to the hybrid approach; ¢: adapted GPA with corrected im-
plementation of adjacency matrix; 2. GIP [26] adapted to the hybrid ap-
proach, using cardinality and confidence as object features and privacy nodes
with zero-initialised features.

egy achieves performance comparable to GA-MLP and out-
performs MLP, especially in terms of recall on the private
class and balanced accuracy. The first strategy has lower
balanced accuracy than the second strategy but achieves a
recall of 90.89% in the private class denoting that most of
the private images contain people. Nonetheless, this first
strategy has many false positives (a precision of 40.43% in
the private class), indicating that images with people are not
necessarily private. The more restrictive condition of the
second strategy better balances the issues of the first strat-
egy, but the recall for private images is limited to 74.67%.



5. Conclusion

In this paper, we used post-hoc explainability to identify
and quantify objects contributing to the decision of image
privacy classification models, which are trained on concepts
extracted from an image by a pre-trained detector. The ex-
plainability analysis showed that privacy models, such as
MLP and GA-MLP, are biased towards the presence of the
object person. Based on this finding, we devised two sim-
ple person-centric strategies that achieve comparable over-
all classification performance to that of the state-of-the-art
models considered in the comparison.

Future work will extend the explainability analysis to
other publicly available datasets, such as VISPR [13],
IPD [26] and DIPA [25], and other models with differ-
ent concepts and features [3, 19, 22,26]. We will also in-
clude and compare the results of other explainability meth-
ods [4, 14,16, 17].

Appendix

We provide details of the methods considered for our
evaluation and explainability analysis. Specifically, we pro-
vide the rationale behind the chosen methods, a review of
the main aspects of each method. We also provide details
of the parameter settings, and training details, and imple-
mentation details in common to all privacy models for a fair
comparison under the settings designed in the main paper.

A. Privacy models
A.l. MLP

Tonge et al.’s method [21] uses a convolutional neural
network, pre-trained on ImageNet [5], for multi-label object
recognition. The feature vector with the confidence of the
1,000 objects is converted into binary values by assigning 1
to the top-k most confident classes and O to the all the other
classes. The binarised feature vector is used as input to a
classifier trained to predict the privacy of an image. Sup-
port Vector Machine was used as classifier and & was set to
10 in the study [21,22]. Baranouskaya and Cavallaro [3] de-
fined different input features, such as person presence, per-
son cardinality, outdoor scene, and sensitive features (e.g.,
violence), and evaluated both a logistic regression and an
MLP as privacy models.

Following the ideas and results of these two studies, we
devise a baseline that aims to reproduce the method but us-
ing the objects and their features as defined in the main
paper (see Section 2). Specifically, we replace the multi-
label object recognition with the object detector, and the
binary feature vector with the cardinality and confidence
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features. We also use an MLP as privacy classifier given
its best-performing results in Baranouskaya and Cavallaro’s
work [3]. We simply refer to this baseline as MLP.

A.2. Graph-based methods

GIP [26] and GPA [19] belong to the two-stage end-to-
end training-based category. Both methods model a graph
of objects and two additional nodes representing the public
and private classes (privacy nodes). The 80 COCO cate-
gories [12] are used as objects.

GIP relates objects and privacy nodes with a weighted,
undirected, bipartite graph using the frequency of each ob-
ject with respect to all images labelled as either private or
public in a given dataset [26]. A convolutional neural net-
work (VGG-16) is fine-tuned to extracts deep features from
the regions of interest localised in an image and associated
with the corresponding object node in the graph. The pri-
vacy nodes are initialised with the deep features extracted
from the whole image by another fine-tuned convolutional
neural network (ResNet-101). When objects are not lo-
calised in an image, their features are initialised to 0. All
features are also complemented with a 1-hot encoding vec-
tor to distinguish the privacy nodes, the object nodes, and
the object nodes with zero-initialised features.

GPA relates objects with each other by finding at least
one co-occurrence of the objects in the dataset, resulting in
an unweighted and undirected graph. GPA uses cardinality
as object features and initialises the features of the privacy
nodes with the logits from a trainable fully connected layer
that maps the outputs (logits) of a ResNet-50 pre-trained
for scene recognition to the two privacy classes. The scene
classifier is also fine-tuned during the training of GPA. Both
GPA and GIP use a Graph Reasoning Model [24] to propa-
gate and refine the node features according to the modelled
graph structures, and then use a fully connected layer for
the final classification. The Graph Reasoning Model con-
sists of three layers of Gated Graph Neural Network [11]
and a modified Graph Attention Network [23,24].

A.3. From end-to-end to a hybrid approach

To adapt the two methods to a two-stage hybrid ap-
proach, we decoupled the graph component (Graph Reason-
ing Model and fully connected layer) from the CNNs, and
we initialise the nodes with the cardinality and confidence
features obtained from the pre-trained object detector. This
means that there is no longer the end-to-end training of the
whole pipeline and fine-tuning of the CNNs.

Under our setting, we cannot initialise the privacy nodes
of GIP with the high-dimensionality (4,096) feature vectors
extracted by ResNet-101 and hence we initialise the fea-
tures of the two nodes to 0. We refer to this model as GIP*
in Table 1 of the main paper. Note that GIP was trained and
evaluated only on the Image Privacy dataset [26], whereas



we train a new GIP model trained only on PrivacyAlert.
Similarly, we removed the dependency of the scene clas-
sifier and the trainable fully connected layer for GPA. Be-
cause of the presence of the privacy nodes, we also discard
the background category that was included to account for
images with no detected objects. We therefore train a model
as close as possible to the original implementation* where
the features of the object nodes are the cardinality and the
binary flag>. However, we replace the features of the pri-
vacy nodes with pseudo-randomly generated values in the
interval [—20, 20] according to the range of the logits esti-
mated by the fine-tuned CNN to simulate a non-optimised
and non-zero initialisation of the features. We refer to this
model as GPA* in Table 1 of the main paper. Note that we
also evaluated a variant with zero-initialisation of the fea-
tures of the privacy nodes and we obtained the same results.
As we noticed a misplacement of the adjacency matrix
in the original implementation, we also corrected this error
and train a second model. For this second model, we use
both cardinality and confidence features, without the binary
flag, for a fair comparison with the other models. We refer
to this model as GPA® in Table 1 of the main paper. We also
tried with either of the two features, as well as using the pro-
jection to a higher dimensionality as done for GA-MLP, but
all of these models degenerate to predicting a single class.

B. Parameters setting and training details

Object detector. We use YOLOV3 [15], pre-trained on the
80 categories of COCO [12], as object detector. When lo-
calising the objects, we allow a maximum of 50 objects for
each image while retaining the most confident ones after
re-ranking. We also use a minimum threshold of 0.6 and
a non-maximum suppression threshold at 0.4. According
to the detector settings, we resize images to a resolution
of 416x416 pixels. Note that these settings are different
from GIP and GPA, which limit the maximum number of
regions of interest only to 12. Moreover, GIP used Mask
R-CNN [8] as object detector with a threshold of 0.7 on the
object confidence and the weighted edges of their modelled
graph included images from the testing set (data leakage).
On the contrary, GPA used YOLOv3 [15] with a threshold
of 0.8 on the object confidence. Our choice to decrease the
threshold is to allow the localisation of more objects in an
image, increasing the detected categories and the cardinal-
ity for more discriminative features. However, the lower
threshold can also result in more false positives and affect-
ing the input features of the privacy model that should be
designed to handle noisy data.

Training. For reproducibility of models and experiments,
we set the seed to an arbitrary value of 789. Note that we

4hffp(§ ://github.com/smartcameras/GPA/
SIn our experiments, we found that the flag does not provide any con-

tribution to the model.

do not analyse variations in the performance due to multi-
ple and different seeds, which is beyond the scope of this
paper. As training strategy, we follow the recipe of Bench-
marking Graph Neural Networks [6]. We use Adam as op-
timizer [10] with an initial learning rate of 0.001 and with-
out weight decay. We schedule the learning rate to halve
if the balanced accuracy of the validation set does not im-
prove for at least 10 epochs (patience). We use early stop-
ping to interrupt the training of the models if the learning
rate decreases to a value lower than 0.00001 or the train-
ing time lasts longer than 12 hours. In case none of the
two conditions is satisfied, we also set the maximum num-
ber of epochs to 1,000. Note that we save the model at the
epoch with the highest balanced accuracy in the validation
split and We use this model for the evaluation on the testing
split. Moreover, we set the batch size to 100.

C. Implementation

We implement all models using PyTorch 1.13.1. We use
the PyTorch Geometric library for GIP, GPA, and GA-MLP.
We trained all models on a Linux-based machine with a
NVIDIA GeForce GTX 1080 Ti (12 GB RAM). To en-
sure the fairness of the benchmark, all methods share the
same training and testing software (i.e., only the model is
replaced).
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