
HIVE: Evaluating the Human Interpretability of Visual Explanations

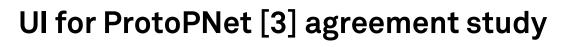
Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, Princeton University

Overview

 Despite the growth of the interpretability/XAI field, evaluating interpretability methods remains a challenge, particularly due to the diverse range of proposed explanation types.

Our contributions:

- We present HIVE (Human Interpretability of Visual Explanations), a novel human evaluation framework for visual interpretability methods.
- We demonstrate HIVE's effectiveness and usefulness for evaluating a variety of interpretability methods, and open-source our UI code.
- We are the first to investigate the utility of visual explanations in distinguishing correct and incorrect predictions, conduct human studies for interpretable-by-design models, and study how users trade off interpretability and accuracy.


HIVE study design

- HIVE was designed to enable cross-method comparison by evaluating a variety of interpretability methods on a common task.
- For human-centered evaluation, we design these tasks to measure the utility of explanations to human users in AI-assisted decision making scenarios.
- These objective evaluation tasks enable falsifiable hypothesis testing about whether a given method has a certain property.

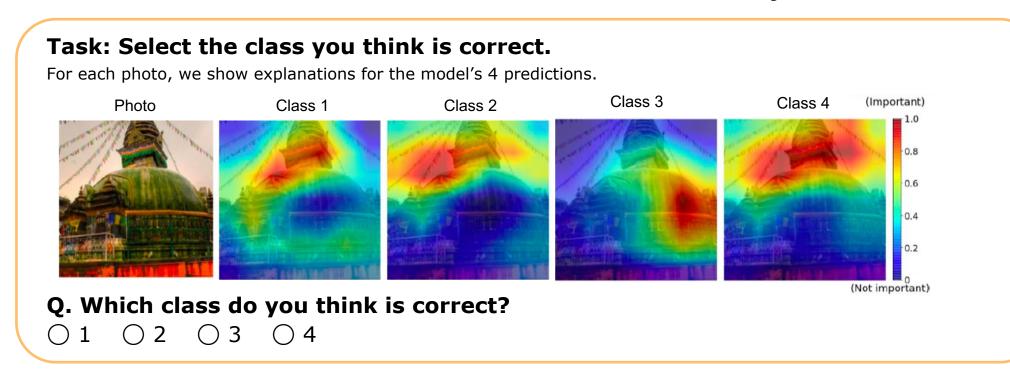
	Agreement task Q. How confident are you in the model's prediction?
HIVE study design	Class A, looks like like
Introduction	
Task preview & Examples	Distinction task Q. Which class do you think is correct?
Objective evaluation task	Class A, because looks like looks because looks like like looks like looks like looks like looks like like looks looks looks looks like looks
Subjective evaluation questions	Class B, because looks like looks because looks like looks like looks like

Evaluation UI examples

Task: Rate the similarity of each row's prototype-region pair on a scale of 1-4. (1: Not similar, 2: Somewhat not similar, 3: Somewhat similar, 4: Similar) The model predicts **Species 2** for this photo. Shown below is the model's explanation for its

prediction (all prototypes and their source photos are from **Species 2**).

Q. What do you think about the model's prediction?


- Fairly confident that prediction is *correct*
- Somewhat confident that prediction is *correct*
- Somewhat confident that prediction is incorrect
- Fairly confident that prediction is incorrect

UI for GradCAM [1] distinction study

 $\bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4$

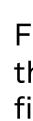
 $\bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4$

looks like

Experimental setup

- We conduct IRB-approved human studies of 4 methods that span the diversity of visual interpretability methods on CUB (birds) and ImageNet (objects) image classification tasks.
- We evaluate each method on the agreement and distinction tasks. Each study is completed by 50 participants recruited through Amazon Mechanical Turk.
- For each study, we report the mean accuracy and standard deviation of the participants' performance. We also compare the study result to random chance and compute the p-value from a 1-sample t-test.

Key findings


• The **agreement** task results reveal an issue of **confirmation bias**: Participants tend to believe that a model prediction is correct when given an explanation for it.

CUB	GradCAM [1]	BagNet [2]	ProtoPNet [3]	ProtoTree [4]
Correct	72.4% ± 21.5%	75.6% ± 23.4%	73.2% ± 24.9%	66.0% ± 33.8%
Incorrect	32.8% ± 24.3%	42.4% ± 28.7%	46.4% ± 35.9%	37.2% ± 34.4%
ImageNet	GradCAM [1]	BagNet [2]	 Goal: 100% accuracy, i.e., participants can perfectly identify whether or not a prediction is correct Baseline: 50% accuracy with random guessing 	
Correct	70.8% ± 26.6%	66.0% ± 27.2%		
Incorrect	44.8% ± 31.6%	35.6% ± 26.9%		

• How to read the numbers: For GradCAM on CUB, participants thought 72.4% of correct predictions were correct and 100 - 32.8 = 67.2% of incorrect predictions were correct.

Project page: <u>https://princetonvisualai.github.io/HIVE/</u> Code: <u>https://github.com/princetonvisualai/HIVE</u>

Key findings (continued)

• The **distinction** task results reveal that participants struggle to identify the correct class based on explanations, especially when the model has made an incorrect prediction.

CUB	GradCAM [1]	BagNet [2]	ProtoPNet [3]	ProtoTree [4]
Correct	71.2% ± 33.3%	45.6% ± 28.0%	54.5% ± 30.3%	33.8% ± 15.9%
Incorrect	26.4% ± 19.8%	32.0% ± 20.8%	 Goal: 100% accuracy, i.e., participants can perfectly identify the correct class (the predicted class for the below table) Baseline : 25% accuracy with random guessing 	
ImageNet	GradCAM [1]	BagNet [2]		
Correct	51.2% ± 24.7%	38.4% ± 28.0%		
Incorrect	30.0% ± 22.4%	26.0% ± 18.4%		

 How to read the numbers: For GradCAM on CUB, participants were able to identify the correct class for 71.2% of the correct predictions and 26.4% of the incorrect predictions.

For GradCAM [1] and BagNet [2], we also ask participants to select the class they think the model predicts (**output prediction** task) and find they struggle to identify the output based on explanations.

Dataset	CUB		ImageNet	
Method	GradCAM [1]	BagNet [2]	GradCAM [1]	BagNet [2]
Correct	69.2% ± 32.3%	50.4% ± 32.8%	48.0% ± 28.3%	46.8% ± 29.0%
Incorrect	53.6% ± 27.0%	30.0% ± 24.1%	35.6% ± 24.1%	34.0% ± 24.1%

How to read the numbers: For GradCAM on CUB, participants were able to identify the class the model predicted for 69.2% of the correct predictions and 53.6% of the incorrect predictions.

For ProtoPNet [3] and ProtoTree [4], we ask participants to rate the similarity of prototype-image pairs and empirically confirm prior work's [4, 5] anecdotal observation that prototype-based models' notion of similarity sometimes doesn't align with that of humans.

• Finally, we study the **interpretability-accuracy tradeoff** participants are willing to make under different risk settings. On average, participants require a baseline model to have +6.2% higher accuracy for low-risk (e.g., scientific or educational purposes), +8.2% for medium-risk (e.g., biodiversity and ecosystem monitoring), and +10.9% for high-risk (e.g., veterinary science or medical diagnosis) settings, to use it over a model with explanations.

More information

References

- Selvaraju et al. "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization." ICCV 2017.
- 2. Brendel & Bethge. "Approximating CNNs with Bag-of-Local-Features Models Works Surprisingly Well on ImageNet." ICLR 2019.
- 3. Chen*, Li* et al. "This Looks Like That: Deep Learning for Interpretable Image Recognition." NeurIPS 2019.
- 4. Nauta et al. "Neural Prototype Trees for Interpretable Fine-grained Image Recognition." CVPR 2021. 5. Hoffmann et al. "This Looks Like That... Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks." ICML Workshops 2021.